TY - JOUR AU - Kamil Khairnasov PY - 2019/10/11 Y2 - 2024/03/28 TI - Modeling and thermal analysis of heat sink layers of multilayer board JF - Amazonia Investiga JA - Amazonia Investiga VL - 8 IS - 23 SE - Articles DO - UR - https://www.amazoniainvestiga.info/index.php/amazonia/article/view/917 AB - Issues of heat dissipation in multilayer printed circuit boards (PCB) are very important due to the increasing density of installation of electronic components. There are many approaches to solving the problem of reducing the temperature of electronic components from conductive and convective heat removal in vacuum and normal operating conditions prior to the use of fans and cooling radiators. In multilayer printed circuit boards, the most efficient is the removal of heat using heat-removing layers made of materials with a high degree of heat transfer: copper, aluminium, magnesium, etc., and of sufficient thickness for efficient heat dissipation. At the same time, as experience shows, an unjustified increase in the thickness of the heat-removing layers in multilayer printed circuit boards leads to a deterioration in the weight characteristics of multilayer boards with an inefficient heat sink. Therefore, the study of the effective thickness of the heat-removing layers and the materials used in this process is an important and urgent problem. Mathematical modelling of the module of an aircraft instrument containing a multilayer printed circuit board with heat-removing layers of various materials has been carried out. The convergence of the calculation results is checked by reducing the mesh of the finite element mesh. Heat removal was taken into account at different thicknesses of the heat-removing layer. The dependence of the heat sink on the thickness of the heat sink layer of the multilayer printed circuit board was revealed. This dependence was nonlinear in nature: with an increase in the thickness of the heat sink layer, the relative value of the heat sink decreased. As a result, the optimum thickness of the heat sink layer was obtained, at which an increase in thickness slightly affected the heat removal. ER -