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Abstract

The problem of searching for strictly
pseudoprime numbers is relevant in the field of
number theory, and it also has a number of
applications in cryptography: in particular, with
the help of numbers in this class one can
strengthen the efficiency of the Miller-Rabin
simplicity test by transforming it from
probabilistic into deterministic. At the present
time, several algorithms for constructing
sequences of such numbers are known, but they
have a rather high complexity, which makes it
impossible to obtain strictly pseudoprime
numbers of large magnitude in an acceptable
time. The theme of this paper is the construction
of strictly pseudoprime numbers of the special
formn =pq = (u+ ) (2u + 1), where p, q are
prime numbers, u is a natural number. Numbers
of this kind are present in the sequence Wk, used
to estimate the number of iterations in the Miller-
Rabin simplicity test. We denote by Fk the
smallest odd composite number of the above-
mentioned type, which successfully passes the
Miller-Rabin test with k first prime numbers. The
paper proposes a new algorithm for constructing
Fk numbers, gives data on its speed and efficiency
on the memory used, and specifies the features
of the software implementation.

Keywords: strictly pseudoprime numbers,
strongly pseudo-simple numbers, algorithm for
constructing strictly pseudoprime numbers,
Miller-Rabin test, special form of a number.
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Resumen

El problema de la busqueda de nUmeros
estrictamente pseudoprimos es relevante en el
campo de la teoria de nimeros, y también tiene
varias aplicaciones en criptografia: en particular,
con la ayuda de nimeros en esta clase se puede
fortalecer la eficiencia de la simplicidad de Miller-
Rabin Prueba transformandolo de probabilistico
en deterministico. En la actualidad, se conocen
varios algoritmos para construir secuencias de
tales numeros, pero tienen una complejidad
bastante alta, lo que hace imposible obtener
nimeros estrictamente pseudoprimos de gran
magnitud en un tiempo aceptable. El tema de
este articulo es la construccién de numeros
estrictamente pseudoprime de la forma especial
n=pq=(u+ I)2u + 1), donde p, q son
nimeros primos, u es un nimero natural. Los
nimeros de este tipo estan presentes en la
secuencia Wk, utilizada para estimar el nimero
de iteraciones en la prueba de simplicidad de
Miller-Rabin. Denotamos por Fk el nUmero
compuesto impar mas pequefio del tipo
mencionado anteriormente, que pasa con éxito
la prueba de Miller-Rabin con k primeros
nimeros primos. El documento propone un
nuevo algoritmo para construir nimeros Fk,
proporciona datos sobre su velocidad y eficiencia
en la memoria utilizada y especifica las
caracteristicas de la implementacién del
software.

Palabras claves: Numeros estrictamente
pseudoprimos, nimeros fuertemente pseudo-
simples, algoritmo para construir ndmeros
estrictamente pseudoprimos, prueba de Miller-
Rabin, forma especial de un nimero.
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Resumo

O problema de encontrar nimeros pseudoprimos é estritamente relevante no campo da teoria dos
numeros, e também tem muitas aplicacdes em criptografia: em particular, com a ajuda de nimeros nesta
classe pode fortalecer a eficiéncia da simplicidade de Miller Teste de Rabin transformando-o de
probabilistico para deterministico. Atualmente, varios algoritmos sao conhecidos por construir seqiiéncias
de tais nUmeros, mas eles tém uma complexidade bastante alta, o que torna impossivel obter nimeros
estritamente pseudoprimo de grande magnitude em um tempo aceitavel. O assunto deste artigo € a
construcao de nimeros estritamente pseudoprimo forma especial comn = pq = (L + |) (2u + |) em que
P, q s2o nimeros primos, u € um numero natural. Nimeros desse tipo estao presentes na seqiiéncia Wk,
usada para estimar o numero de iteragdes no teste de simplicidade de Miller-Rabin. Denotamos por Fk o
menor nimero composto impar do tipo mencionado acima, que passa com sucesso no teste de Miller-
Rabin com k primeiros nimeros primos. O documento propée um novo algoritmo para a construgao de
numeros Fk, fornece dados sobre sua velocidade e eficiéncia na meméria utilizada e especifica as
caracteristicas da implementagao do software.

Palavras-chave: Numeros estritamente pseudoprimarios, nimeros fortemente pseudo-simples,
algoritmo para construcdo de numeros estritamente pseudoprimarios, teste de Miller-Rabin, forma

especial de um nimero.

Introduction

Of all the types of numbers used in cryptography,
the most widely used are prime numbers. A
natural number is said to be simple if it shares
only one unit and itself. Otherwise it is called
compound. Such a definition always makes it
possible to distinguish a prime number from a
composite one, but it quickly becomes
inapplicable in practice - with increasing
numbers, their verification for simplicity (search
of all possible divisors) takes more and more
time (Crandall & Pomerance, 201 |; Golovchun,
2017).

The first step in solving this problem was made
by the French mathematician Pierre Fermat.
Having formulated the statement, later called
"Fermat's small theorem", he proposed the
necessary condition for the given number to be
simple. Later, this condition was turned into
sufficient to make the number composite.
Nevertheless, the use of Fermat's small theorem
as a criterion for checking the number for
simplicity turned out to be impossible: there
were composite numbers that could not be
distinguished from simple ones, using only the
condition of the theorem (Crandall &
Pomerance, 2005; Villalobos Antiinez, 2013).
Such numbers began to be called pseudoprimes.

The next significant contribution to the solution
of the problem of checking the simplicity of the
number  was  the Miller-Rabin  test
(Ishmukhametov, 2011). In general, the test
result for this test is correct only with a certain

probability, but the probability of error
decreases fourfold after the next stage of
verification. If the given number n is simple, then
the next round of the test, performed with any
number a (I <a <n), will show in favor of the
fact that n is simple. The number a in this case is
called the witness of the simplicity of the number
n. According to the theorem proved by Rabin, all
numbers less than a given prime number will be
the witnesses of simplicity. At the same time, the
number of witnesses to the simplicity of any
composite number does not exceed a quarter of
the value of the Euler function from it
(Ishmukhametov & Mubarakov, 2014;
Ishmukhametov & Mubarakov, 2013).

Thus, this number can be compound, but some
of the smaller numbers will indicate its simplicity.
Let a natural number n be given and a (I <a <n)
is a witness of its simplicity. In this case, the
number n is called strictly (strongly)

nn

pseudoprime with respect to the base "a
(Pomerance et al, 1980; Jaeschke, 1993).

Methods

Consider a set of numbers of the form n = pq =
(u+ 1) (2u + ), where p, q are prime numbers,
u is a natural number. The smallest number of a
given set that successfully passes the Miller-Rabin
test with k first prime numbers is noted by Fk. By
definition, the number Fk has the following form:
Fk =pg=(u+1)Q2u+ 1),
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where p, q are prime numbers, u is a natural
number. It is known that the remainder of
dividing any prime number by 6 can be equal to
either | or 5. We use this property to refine the
form of the numbers Fk. We write and solve four
systems of linear comparisons (Jiang & Deng,
2012):

u+1l=1 (mod 6)
2u+1=1 (mod 6)

u+1l=1 (mod 6)
2u+1=5 (mod 6)

u+1=5 (mod 6)
2u+1=1 (mod 6)

u+1l=5 (mod 6)
2u+1=5 (mod 6)

Solving system (1), we obtain that u = 6t, where
t is a natural number. Systems (2), (3), (4) have
no solutions. Thus, the form of the number Fk
can be written as follows:

Fk = pq = (6t + 1) (12t + 1), where p, q are
prime numbers, t is a natural number.

We carry out further transformations: let the
prime numbers p, q be given. The number n =
pq is strongly pseudoprime with respect to the
base a if and only if the following conditions hold:

Ordp(@) | GCD (p — I;9 — 1),
Ordq (a) | GCD (p — I;q = 1),

Bin(ordp (a)) = Bin(ordq (a)).

Ifn=pqg=(u+ 1)2u + I) we will get
Ord(u+1) (@) | u

Ord2u+1) (@) | u

Bin (Ord(u+1) (a)) = Bin(Ord(2u+1) (a)).

It follows that any witness of the simplicity of a
number

n=pg=@U+1)Qu+1)

is not a generator of the Galois field GF (q).
Therefore, we can say that the number a is a

a
g

=1

quadratic residue of modulo q and

Encuentre este articulo en http://www.udla.edu.co/revistas/index.php/amazonia-investiga

As the index k increases, the form of the number
Fk can be sequentially refined (modified),
increasing the coefficients before t.

CASEk = I:

In this case, the simplicity of the number Fk is
guaranteed to be the first prime number — 2.

2 2 R R,
(q]=(12t+lj=(71) ( 2 J_(fl) =D

) -

Thus, t can take only even values (STRONG
PSEUDOPRIMES TO TWELVE PRIME BASES
JONATHAN SORENSON AND JONATHAN
WEBSTER). Consequently, any number Fk can
be represented in the following form:

Fk = pq = (12t + 1)(24t + I),

where p, q are prime numbers, t is a natural
number.

CASE k = 2:

()% =1

In this case, the first two prime numbers - 2 and
3 - are guaranteed to be the witnesses of the
simplicity of the number Fk. The form of the
number Fk, strictly (strongly) pseudoprime with
respect to the base 2, has already been
established. Now you can explore it for the
possibility of refinement along with a simple
number 3:

3 3 B2OUMAT)
T o

Form for search Fk remains the same

CASE k > 2.

Consider the example of the case k = 3. Taking
as the basis the form of the number Fk, strictly
pseudoprime for bases 2 and 3, we try to refine
it using the third prime number - 5. We have:

[5] ( 5 ] 2“‘.“(24”1] (4t+1}
= =(-1) 22 =1 =1
q 24t +1 5 5

The quadratic residues of a prime number 5 are
numbers | and 4. The form 4t + | must be
comparable to one of them modulo 5. We have:

(4t +1=1 (mod 5)
4t+1=4 (mod 5)
[t=0 (mod 5)
t=2 (mod 5)

[ t=5v
t=5v+2

Thus, the form for finding the numbers Fk for k
= 3 can be clarified, but it will be necessary to
consider not one but two more precise forms.
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We note that as the index k increases, starting
from the value of 3, the number of forms that will
need to be considered after the next stage of
refinement also increase.

From all of the above, the following scheme for
constructing special forms follows: let the value
of index k be given, and it is required to find the
value of the corresponding number Fk.

If k = I or k = 2, then we searching through the
natural values of the variable t according to the
form:

Fk = pq = (12t + ) (24t + |),where p, q are
prime numbers, t is a natural number.

If k> 2, this "initial" form can be refined
sequentially, but no more than k - 2 times. At the
same time, as noted earlier, at the next stage of
refinement j (I <= j <k-2), a set of new special
forms will be obtained, and the enumeration of
the values of each individual form will be
performed with a much larger step. Let the initial
form:pq = (12t + 1) (24t + |) passed j - | stages
of refinement. Accordingly, we construct the set
Fi-1 of all possible special forms suitable for
finding the numbers Ft, where t > = j - |.
Construct all the most accurate forms for finding
the number Ft, where t > = j. For this:

|. Consider the j-th order prime pj and the set Rj
of quadratic residues modulo pj.

2. For each pair (f, r) f = Fj-1, r = Rj we
solve the linear comparison f = r (mod pj). As a
result, the variable t in the form f will be
represented in the form t = pj * n + ¢, nisanew
variable, c is a natural number smaller than pj.

3. Having made the change of variables in the f
form, we get a new more precise form suitable
for searching for the numbers Fj, Fj + 1, ..., Fk.

Results and Discussion

The input of the algorithm is given by values of
the following parameters:

I. The index k of the number Fk.to be
found

2. The boundary of the computation is
the number B, which restricts the value of Fk..

3. Depth of constructing a tree of
special forms d <= k

4. The number of available processors
C (when using a software implementation that
allows parallelization)
Comment I:
All entered values must be natural numbers.
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Comment 2:

In accordance with the value of the parameter d,
special forms suitable for searching for the
numbers Fj, where j > = d, will be constructed.
Obviously, the number Fk.is guaranteed to be
strictly pseudoprime with respect to the first k
prime numbers, therefore we need to take d
<=k

General scheme of the algorithm

I. Transmission of input parameters

2. Ifk = | or k = 2, search Fk among
the values of the special form n = pq = (12t +
[) (24t + 1) that do not exceed the given
boundary B (t is a natural number). Early exit the
algorithm.

3. Otherwise, build a list of special
forms in accordance with the parameter d.

Search Fk among the values of each of
the constructed special forms. The search for
each form is carried out by increasing the natural
arguments and until its value exceeds the
specified boundary B.

Development environment

The algorithm is implemented in the C#
programming language in the Microsoft Visual
Studio 2012 environment. The complete list of
libraries connected to the project after its
development and optimization is as follows:

using System;

using System.Collections;

using System.Collections.Generic;
using System.Ling;

using System.Numerics;

using System.Text;

using System.Threading;

The implementation uses the System.Threading
subspace of names and provides the ability to
perform parallel computations to find the desired
number n. The resource costs associated with
the launch of parallel threads are minimized, as a
result of which the acceleration of the
performance of the algorithm using parallel
computing is almost exactly proportional to the
number of processors involved.

Effective implementation of the Miller-
Rabin test

The running time of the constructed algorithm
directly depends on the speed of checking for the
simplicity of the factors of a given semisimple
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number. In this regard, the procedure for
verifying the simplicity of the number based on
the Miller-Rabin test was significantly improved
in comparison with the direct implementation of
its conceptual model (Damgard et al, 1993). So,
in the simplicity check procedure, a method of
full enumeration of prime divisors was
introduced, the application of which for small
numbers (n <109) yields a gain in the scan time
and saves memory resources:

bool MR1(Biglinteger value)

if (value < 2)
return false;
int sgrt = (int)Sqrt(value);
for (int i = O; Primes[i] <= sqrt; i++)
if (value % Primes[i] == 0)
return false;
return true;

}

A more significant improvement is the
introduction into the Miller-Rabin test of the
numbers of the sequence {Wk}. Their
application makes the test deterministic to the
value of n, equal to the last member of this
sequence, which in practice means a significant
acceleration of the verification procedure:

/l Number group {Wk}, arranged in ascending
order

string[] Psi = { "2047","1373653", "25326001",
"3215031751", "2152302898747",
"3474749660383", "341550071728321",
"341550071728321", "3825123056546413051",
"3825123056546413051",
"3825123056546413051","318665857834031 15
1167461", "3317044064679887385961981"};

For verifiable numbers n whose values exceed
the maximum of the numbers {Wk}, the
verification is carried out according to the
deterministic test of Miller under the condition
of validity of the Extended Riemann.

Hypothesis:

bool MR3(Biglinteger value)
{ // Let (n - 1) be t*(2"s), t - uneven
Biglnteger t = value - 1,
ints =0;
while (t % 2 == 0)
{s++; t/=2;}
/I Define the bound of calculations
/I according to G. Miller, provided the
validity of the CGW boundary b < 2In(n)*In(n)
double logOfvalue =
Biglinteger.Log(value);
Biglnteger border = (Biginteger)(2 *
logOfvalue * logOfvalue) + 1;
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// Test conditions check
for (inti = 2; i <= border; i++)
if ("IsWitnessByBase(i, value, t, s))
return false;
return true;

}

Using the task of the manufacturer and the
consumer

In the process of searching for the number of Fk,
several threads run in parallel. One of them
constructs special forms of searching for the
number Fk in accordance with the parameter d.
Others perform an enumeration of the values of
the obtained forms up to a given boundary. The
transfer of special forms occurs through a buffer
of a limited amount. Thus, the scheme for
implementing the algorithm involves the model
of the problem of the producer and the
consumer.

Summary
During the testing of the algorithm, a sequence
of numbers Fk was constructed for values of

index k not exceeding thirteen.

Table I. Elements of the sequence of numbers
Fk

k, index

number Flc

49141
1373653

1157839381

307768373641
21569059132741
7545178598562 1
30020830945551001
84983557412237221

9 41234316135705689041

10 1955097530374556503981
Il 739501024079412070938I
12 318665857834031151167461
13 3317044064679887385961981

ONONULT AW N —

Below are the data on the time spent searching
for Fk values. The algorithm was launched on a
personal computer with 4 virtual (2 real) cores
and a processor clock speed of 2.0 GHz. The
calculations were made in parallel.
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Table 2. Time of parallel execution of the

algorithm

imber  docrmaldgrs ™
I 0,49 * 105 0, 000001s
2 0,13 *107 0, 000001s
3 0,I15* 1010 0,015s
4 0,307 * 1012 0,109s
5 0,21 * 1014 0,375s
6 0,75 * 1014 0,328s
7 0,3*1017 3s
8 0,84 * 1017 2,5s
9 0,41 * 1020 27s
10 0,195 * 1022 2min 14s
I 0,739 * 1022 5min 33s
12 0,318 * 1024 | 7min 6s
13 0,331 * 1025 51min 25s

Thus, most of the above values of Fk were
calculated in a few seconds or less, and the
largest of the Fk numbers are less than one hour.

The algorithm can be executed simultaneously
by several processors, even with an extremely
small amount of available RAM. The minimum
requirements do not exceed several hundred
bytes and do not depend on the required
number Fk. The algorithm costs for the amount
of RAM used are estimated as O ().

The search for Fk numbers can be performed in
a standard way - by sorting by the even values of
the argument "u" of the form Fk = pq = (u + |)
(2u + ). In this case neither specifying special
forms nor parallel calculations are used. The
table below compares the search time Fk with
the standard sequential search method and the
new method proposed in this work.

Table 3. Search Time Comparison

Vol 7 Nim. 16 /Septiembre-Octubre 2018

6 0,328s Imin43s
7 3s 35min 22s
8 2,5s 59min 20s
9 27s > 24 hours

Search by Standard
Index .
proposed new sequential
number
method search
I 0, 000001s 0, 000001s
2 0, 000001s 0, 000001s
3 0,015s 0,265s
4 0,109s 6s
5 0,375s 54s

Obviously, the efficiency of the algorithm using
the procedure for constructing more precise
special forms and using parallel computations is
much higher.

Estimation of algorithm complexity

Let the ordinal number k of the number Fk be
given, the value of the parameter d (I < d < k)
and the boundary of the computation B.

I. Let S denote the number of special forms

constructed to search for Fk
g - —1
S=s@d)=2-1 [p—j
i=1 2
where g i-th prime number in order

2. Denote by N the number of non-negative
values of the argument t of a separate special
form, on which its values are less than the
d

I p=P
specified boundary B. Let =1 .
Then any constructed special form has the form

(2Pt+C,)(4Pt+C,)
C,<2P C,<4P
, and we have:

(2Pt+C,)(4Pt+C,)<B
8P’t* +(2C, +4C,)Pt—-(B-C,C,)<B

roe

Solving this inequality with respect to t, we
obtain:

[ ~(2C, +4C)) +(2Cc, -4C,)? +32B
} 16P

Thus,

99
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3. Estimation of the complexity of the
algorithm:

E =S(d)-N(d)

d —
VBT | Pl
N &

E=0 o4

4. It is obvious that for a fixed boundary B the
minimum E = E (d) is attained at d = k. Thus, in
the sequential execution of the algorithm, we
agree to take d = k. In this case we have:

k —
BT P
Y
2k

E=Ek)=0

Conclusions

Being adapted to use parallel computations, the
proposed algorithm can certainly be useful in
modern studies in the construction of strictly
pseudoprime numbers. It is safe to assume that
the construction of algorithms based on special
forms will make it possible to approach even
more closely the solution of more general
problems related to the construction of numbers
of this class.
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